mxe002

Masumi Eto, PhD

Contact Dr. Eto

1020 Locust Street
436 JAH
Philadelphia, PA 19107

(215) 503-7891
(215) 503-2073 fax

Medical School

PhD, Hokkaido University, Chemistry - 1996

Expertise & Research Interests

PHOSPHATASE SIGNALING IN REGULATION OF CELL MOTILITY

Research Overview

The long-term goal of our research is to understand signal transduction controlling cell motility, a fundamental process for every aspect in biology. Environmental cues, such as released chemical substances and physical stresses, trigger reorganization of cytoskeletons, resulting in force generation, morphological change, transportation, and migration. Signals controlling cell motility are dynamic and orchestrated in TIME and SPACE. Not surprisingly, dysfunctions in the cytoskeletal reorganization have been linked to various diseases, as well as served as a therapeutic target to normalize pathological situations.

Our research focus involves roles of protein phosphatases in the regulation of cell motility. For example, smooth muscle contraction is controlled through the phosphorylation of myosin, a motor protein. Agonist stimulation activates G-proteins, resulting in an enhance in kinase in parallel to the inhibition of phosphatase. The inhibition of phosphatase is necessary for robust and sustained myosin phosphorylation and force generation. In general, multiple regulatory elements are involved in cellular phosphatase regulation, while a limited knowledge of the mechanisms controlling phosphatase activity is currently available.

We use a multidisciplinary approach, including techniques in biochemistry, cell biology, structural biology and physiology, to understand spatio-temporal regulation of cell motility via phosphatases. Our works uncovered a novel family of endogenous phosphatase inhibitor proteins that mediate kinase signal into phosphatase. These are highlights of our research:

  1. Understanding of spatio-temporal regulation of protein phosphatases that control cell motility, neuronal transmission, cancer cell migration and cytokinesis.
    FASEB J. 2003, J Biol. Chem. 2001, 2002, 2007, Neuron 2002, J Cell Sci. 2002, 2006, Cell Motil. Cytoskel. 2000, 2005
  2. Characterization of signal transduction controlling agonist-induced smooth muscle contraction and relaxation.
    J. Biol. Chem. 2000, 2001, 2009, Circ. Res. 2007, J. Physiol. 2009
  3. Structural sights into regulation of protein phosphatases.
    J Mol Biol 2001, 2002, PNAS 2003, Structure 2007

Previous Lab Members

  • Archana Verma, Postdoc Fellow
  • Jason A. Kirkbride, Senior Research Associate
  • Shawna Dougherty, MS student
  • Yongtong Zhao, Senior Research Associate
  • Jee In Kim, Postdoc Fellow
  • Garbo D. Young, Lab Specialist/MS student
  • Mark Urban, Lab Specialist
  • Mukta Khasnis, Lab Specialist/MS student
  • Kristyn Gummper, Lab Specialist/MS Student
  • Nana Karikari, MS Student

Keywords

Cell motility; Smooth muscle contraction; Artery; Airway; Hypertension; Asthma; Cancer; Signal Transduction; G-protein; Myosin; Phosphorylation; Cytoskeleton; Protein Kinase C; Rho-kinase; Myosin Phosphatase; Protein Phosphatase; CPI-17; PHI-1; Filamin; STAT3; ERK1/2; Enzyme regulation; Cell Imaging; Fluorescence microscope; FRET imaging; Fluorescence Polarization; Structural biology; NMR spectroscopy; Computer modeling; Proteome; Phosphatome; Protein purification; Yeast two-hybrid; Molecular Physiology; Vascular Biology; Biochemistry; Cell Biology