Dear Student:

Welcome to Jefferson Medical College! From November through January of the first year, you will take the course Molecular and Cellular Basis of Medicine (MCBM), which contains topics from molecular biology, genetics, cell biology, cell physiology, and biochemistry.

Courses in cell biology, genetics, or biochemistry are not a prerequisite for admission to Jefferson Medical College. MCBM is taught accordingly. However, we recognize that our course presents a special challenge to non-science majors, who sometimes find it challenging to learn the vocabulary and concepts, and to think in a scientific manner. If you are a non-science major and if you feel that you have a weak background in molecular biology and cell biology, we would like to recommend that you use a little bit of your time this summer to read about this material. This should help you get through November more comfortably.

(Please note that this is not an across-the-board recommendation to study these topics. We make the following suggestions simply in response to students who struggled in the past and told us they wished they had known to study a little bit over the summer.)

Following are comments from two students who finished the course in a previous year: One student wrote: "As a non-science major, just switching from anatomy, which is a fairly "verbal" science, to biochem-style reading, diagrams, etc. was very difficult. I felt totally overwhelmed with the initial week's material on DNA, RNA, etc. as I simply felt totally unfamiliar with the "language." … “As I got more comfortable with reading scientific material, it all became easier, but initially it was very hard. Some optional reading on the DNA/RNA stuff would give us a head-start and also a little exposure to a different style of writing and reading, dealing with diagrams, etc. I liked Lippincott's [see below], but anything concise and clear with good diagrams would have been very helpful."

Another student wrote: “My feeling is that students should have at the very least a basic concept of some of these topics from their MCAT preparation, but in the case of the non-science majors or older students removed from these studies for a few years, there is definitely a need for some pre-reading.” … “As I understand it, this is not meant to be an all-encompassing introduction but rather a way to get acquainted with the general principles of genetics, biochemistry, and metabolism. The more specific details are what the MCBM course is for! To be concise: I feel that the summer reading ought to stress November's material, as these are the concepts that underlie much of the December and January material. Additionally, students who feel anxious about the latter material after November have vacation time in which to read ahead, and at that point they should be much more comfortable/informed as to what their strengths and weaknesses are (and have the syllabus to boot!).”

Past student liaisons felt that you would benefit the most from being familiar with the following topics:

- DNA, RNA, Proteins (structure, processing, etc.)
- Lab Techniques (PCR, blotting, electrophoresis)
- Patterns of Inheritance
- Membrane Structure
If you want to preread, we recommend that you choose one of the following three books:

DR Ferrier, Lippincott's Illustrated Reviews: Biochemistry, 6th edition, Lippincott Williams & Wilkins, Philadelphia, 2013.

This is probably the most popular book among the first-year medical students. They particularly like this book for its illustrations. The strong point of this book is metabolism, which we will cover in December and in January. Molecular biology is not as well developed. Overall, this book contains considerably less detail than you will see in our syllabus. If you want to get a good introduction to molecular biology, please use one of the other two books listed further below.

Detailed recommendations for part 1 (November and the first part of December) of MCBM:

I would suggest that you read the following chapters:

- Chapter 1: Amino Acids (You can go easy on the topic of pH though.)
- Chapter 2: Structure of Proteins
- Chapter 3: Globular Proteins (we will discuss most of this only in December)
- Chapter 4: Fibrous Proteins
- Chapter 5: Enzymes
- Chapter 29: DNA Structure, Replication, and Repair
- Chapter 30: RNA Structure, Synthesis and Processing (leave out anything that pertains to prokaryotes)
- Chapter 31: Protein Synthesis
- Chapter 32: Regulation of Gene Expression (leave out anything that pertains to prokaryotes)
- Chapter 33: Biotechnology and Human Disease (this information is very important if you haven’t worked in a molecular biology lab).

Bruce Alberts et al., Essential Cell Biology, 3rd edition, Garland Science Pub., 2009.

Please note that MCBM is focused on humans (but this book is not). We do not recommend this book as a companion to the MCBM course, but I think it works well if you want to prepare for MCBM.
Detailed recommendations for prereading for part 1 (November and part of December) of MCBM:

Chapters 1 and 2, as well as part of chapter 3 are very basic. You probably know the key concepts from your undergraduate education; if not, please scan these chapters.

The following chapters are very much worth reading. At this stage, don't worry about details. Instead, try to familiarize yourself with the most important principles and with a very rudimentary vocabulary.

For week 1 of the course:
- Chapter 4: protein Structure and Function (read only pages 119-140)
- Chapter 5: DNA and Chromosomes
- Chapter 6: DNA Replication, Repair, and Recombination (only to p. 216; you can leave out recombination)
- Chapter 7: From DNA to Protein
- Chapter 8: Control of Gene Expression (you can leave out bacteria; please focus on eukaryotes)
- Chapter 10: Analyzing Genes and Genomes (to page 354; if you have never dealt with this material before, it is very helpful to read this chapter now)

For weeks 2-4 of the course:
- Chapter 11: Membrane Structure
- Chapter 15: Intracellular Compartments
- Chapter 16: Cell Communication
- Chapter 17: Cytoskeleton (you can concentrate on eukaryotes and leave out muscle contraction)
- Chapter 18: Cell Division Cycle
- Chapter 19: Sex and Genetics (read only pages 664-675)
- Chapter 20: Cellular Communities (read only on cancer, pp. 717-729)

Earlier editions should also work for you. However, I would stay away from the 5th edition, because it is quite disorganized. This book is aimed at graduate students, and it contains many details that you will never have to know. However, it is a beautifully made book, and beginning students often like to use it. We do not recommend this book as a companion to the MCBM course, because it is not sufficiently focused on medicine, but I think it works well if you want to use it to prepare for MCBM.
Detailed recommendations for prereading for part 1 (November and part of December) of MCBM:

You might benefit from trying to extract the most important information from the following chapters:

- Chapter 2: Protein Composition and Structure
- Chapter 3: Exploring Proteins and Proteomes (please read only about electrophoresis)
- Chapter 4: DNA, RNA, and the Flow of Genetic Information (it is worth reading this chapter in its entirety)
- Chapter 5: Exploring Genes and Genomes (this chapter has a lot of information about laboratory techniques; reading this chapter will be very useful)
- Chapter 8: Enzymes: Basic Concepts and Kinetics (this chapter is presumably way above your level of experience; you might just want to skim it)
- Chapter 14: Signal Transduction Pathways (you might benefit from grasping the key concepts; at this point, details are unimportant)
- Chapter 28: DNA Replication, Repair, and Recombination (this chapter is a must)
- Chapter 29: RNA Synthesis and Processing (this chapter is also a must; however, please only concentrate on the key concepts and omit anything that concerns bacteria)
- Chapter 30: Protein Synthesis (please concentrate on the essentials; for our purposes, this chapter contains way too many details)
- Chapter 32: The Control of Gene Expression in Eukaryotes (this chapter is also a must; however, please only concentrate on the key concepts)

Please remember that we are not asking you to learn the material before our course starts. We provide the above list only to make your life easier in case you feel that your background in this basic science is not as strong as you might like it to be.

Good luck and take care!

Peter Ronner, Ph.D.
Course Director of MCBM
E-mail: peter.ronner@jefferson.edu