Calculus II

Name:

Maple Lab #5: Infinite In this Maple Lab you will be working evaluating the s	Series ums of some convergent series.
$sum(k^2 - 3*k + 2, k = 1 10000);$	In Maple, we can use the sum function to find the value of a finite sum, say: $\sum_{k=1}^{10000} k^2 - 3k + 2$ That sum is
<pre>sum(k, k=1 n); simplify(%);</pre>	If the upper limit of the summation is a variable, then we have an indefinite sum. Sometimes, Maple can come up with an explicit formula for the indefinite sum.
<pre>power := proc(r) sum(k^r, k=1 n) end; power(4); power(10);</pre>	This is the formula: $1 + 2 + + n = \frac{n(n+1)}{2}$ Now we will look at series in the form of $\sum_{k=1}^{n} k^{r}$ So, what does this series evaluate to when $r = 4$?
power(-1)	When r = 10? When r = -1?
evalf(subs(n = 200,%))	That last command gives the answer in terms of the built- in function psi , and the constant gamma. For a specific value of n, you can find the approximate value of the sum. Write the first five terms of the sum to show that it is harmonic series.
	Now let look at the series $\sum_{k=1}^{\infty} \frac{1}{k^{\frac{1}{2}}}$ Maple evaluates this sum to
sum(1/k^(1/2), k = 1 infinity);	Now let look at the series $\sum_{k=1}^{\infty} \frac{1}{k^{\frac{1}{2}}}$.

1

 $sum(1/k^{(2)}), k = 1 ... infinity);$

sum((-1)^k/k^2, k=1..n);

This lab is complete and correct. (or, I did this lab at . . .)

lab aide		date				
i want your opinion.		Strongly agree		strongly disagree		
The labs have helped me lear comments:	n the material for the course.	5	4	3	2	1
How long did it take you to c	omplete this lab?					