PI/Lab Name (Department)	Program(s) associated	Rotation Semester	Rotation Projects	Techniques used in the lab include:
	with			
CALABRETTA, Bruno (Cancer Biology)	GGCB IMP	Spring	Assessing the role of chromatin structure in chemotherapy- induced DNA damage in acute myeloid leukemia (AML)	Confocal microscopy analysis of DNA damage, Flow cytometry, RNA-seq and ChIP-seq
CINGOLANI, Gino (Biochemistry & Molecular Biology) Cingolani Lab	BMP IMP	Spring	Mycobacterium Tuberculosis Iron Transport proteins Pseudomonas-phage DNA ejectosome Interaction of SARS-Cov2 ORFs with human Importins	Recombinant protein expression and purification: Crystallization/X-ray data collection Vitrification/Cryo-electron microscopy
CIRIC, Bogoljub (Department of Neurology)	IMP	Fall Spring Summer	Immunology and Neuroimmunology T cells, myeloid cells, cytokines	Experimental autoimmune encephalomyelitis, flow cytometry, RT-PCR, cell culture assays, transgenic mice, ELISA, thymidine proliferation assay, etc.
DEBLER, Erik (Biochemistry & Molecular Biology) Debler Lab	BMP IMP	Spring Summer	My research group investigates the structure and function of macromolecular machines involved in gene regulation and chromatin biology to understand their mechanism of action in health and disease. We are particularly interested in monoallelic expression of the major surface antigen VSG of the protozoan parasite Trypanosoma brucei and in the regulation of this parasite's life cycle.	 -Molecular Biology: Cloning, mutagenesis -Biochemistry: Protein expression and purification, enzymatic assays -Biophysics: Macromolecular characterization and interaction studies, e.g. ITC, SAXS, SPR, AUC, fluorescence polarization -Structural biology: X-ray crystallography, electron microscopy, -Microbiology: Trypanosoma brucei culture, genomic tagging, affinity purification
DEBES, Gudrun (Microbiology & Immunology) Debes Lab	IMP	Fall/Winter Spring	Our lab studies the roles of traditional and innate-like skin- homing lymphocytes at steady and in inflammation. Potential rotation projects include the analysis of B cells in human and mouse skin, skin-recirculating T cells, and mechanisms that induce regulatory (antiinflammatory) B cells.	Flow cytometry, in vivo trafficking and skin inflammation mouse models, sheep lymph cannulation models, analysis of human tissue cells, fluorescence and light microscopy histology, traditional and single cell transcriptome analyses.
EISCHEN, Christine (Cancer Biology) Eischen Lab	BMP GGCB IMP	Fall/Winter Spring	We study the molecular mechanisms of tumor initiation and survival. My lab identifies alterations occurring in cancer cells (lymphomas and carcinomas of the lung, breast, and ovary) that create vulnerabilities that may be targetable. Rotation projects focus on a wide range of topics (basic science to translational) and are designed for each student after a discussion.	 -Cell biology: mouse and human cell culture, cell cycle, cell death, drug sensitivity/resistance -Flow cytometry: phenotyping, assays, stem cell sorting, etc. -Biochemistry: Western blots, immunoprecipitation, mass spectrometry -Mouse Modeling: genetically engineered and human xenografts -Molecular Biology: cloning, mutagenesis, CRISPR/Cas9, etc. -Human sample analysis -Computational biology
HOOPER, D. Craig (Cancer Biology)	IMP	Fall/Winter Spring	We study immune modulation in cancer. Working with brain cancer patients and a mouse glioma model, we have shown that tumor growth has profound effects on immune function through tumor cell-derived exosomes and soluble factors. We use infection with attenuated rabies virus to probe the effects on CNS immunity and study the mechanisms involved. We are also examining other cancers for similar	Mouse glioma, lung cancer, breast cancer, renal cancer, rabies virus infection; In vitro culture approaches including T cell activation, monocyte polarization; immune factor analysis by Luminex, flow cytometry; High throughput gene expression analysis by Nanostring, antisense knockdown of gene expression, miRNA analysis; Microvesicle analysis; Rabies virus immunity and pathogenesis

			immunomodulatory mechanisms, and more specifically the	
			contribution of M2 monocytes to tumor progression.	
IGYÁRTÓ, Botond	IMP	Fall/Winter	Our research is centered around understanding dendritic cell	Flow cytometry, histology, imaging (epifluorescence, confocal, timelapse, two-
(Microbiology & Immunology)		Spring	(DC) biology and developing DCbased vaccines. Ongoing	photon), cell cultures, KO mouse models, skin infection models, antigen delivery
			projects: 1) Determine how different DCs subsets regulate	systems, adoptive cell transfers, techniques to assess antigen-specific T and B cell
Igyártó Lab			humoral immune responses. 2) Intracellular immune	responses, Isolation of primary immune cells from different organs, bone marrow
			monitoring by DCs. 3) Define the role of DCs in maintaining	chimeras, ELISA, ELISpot, PCR, qPCR, RNA-seq, ATAC-seq, transfection,
			tissue homeostasis. 4) Develop artificial antigen presenting	immunoprecipitation, Western blot, etc.
			cell-based vaccines to treat cancer, autoimmune diseases and	
			to aid organ transplantation. 5) Determine the immune	
			mechanism of mRNA-LNP influenza vaccine.	
KIM, Sangwon	IMP	Fall/Winter	We study how diet and metabolites affect immune responses	Cloning and manipulation of DNA, Chromatin immunoprecipitation, retroviral
(Microbiology & Immunology)		Spring	in the intestine in relation to inflammatory bowel disease	transduction, CRISPRmediated mutation of mouse genome. Primary T cell
			development. Particularly, we try to understand: 1) how	culture, flow cytometry analysis, adoptive cell transfer, handling animal models of
Kim Lab			tryptophan metabolites induce T cell homing to the large	inflammatory bowel diseases. Culturing anaerobic bacteria from intestine,
			intestine (and the role of host or gut microbes in this process)	microbiota analysis by 16S sequencing and meta-genomic sequencing.
			and what are the consequences of changes in tryptophan	
			content in diet, 2) how T cell homing is achieved.	
MARKOVIC-PLESE, Silva	IMP	Fall	The role of IL11 in the inflammatory response in multiple	Flow cytometry, RNAseq, western blotting, siRNA experiments, RTPCR, ELISA
(Neurology)	NS	Spring	sclerosis	
NIBAKHT, Neda	IMP	Summer	We study the effect of skin microenvironment on	Cloning, PCR, Confocal imaging, flow cytometry, Cell isolations from skin,
(Dermatology & Cutaneous Biology)		Fall/Winter	development and progression of skin cancer. Specifically, we	tumor, and blood, drug resistance assays, cell adhesion assays, primary cell
		Spring	try to identify how dysregulation of anti-tumor immune	culture, cell proliferation assays; Protein expression and purification,
			responses and extracellular matrix proteins promote	immunoprecipitation; Generation of tumors in mice, establish tumor growth
			progression of cutaneous T-cell lymphoma. This work	curves and quantify tumor response to systemic treatments
			includes studies with freshly isolated skin lymphoma	
			biopsies and blood samples from patients as well as	
			utilization of a novel mouse model developed in our lab.	
			Currently, we are investigating how signaling through	
			TollLike Receptor 4 (TLR-4) on tumor associated	
			macrophages influences tumor progression in cutaneous T-	
			cell lymphoma.	
PAUMET, Fabienne	BMP	Fall/Winter	Host-Pathogen interaction. Our lab studies how Chlamydia	Cloning and manipulation of DNA, PCR, Mutagenesis, Bioimaging (confocal/
(Microbiology & Immunology)	CBRM	Spring	reprograms its host cell (at the molecular level) to sustain its	superresolution); Transfection; Immunoprecipitation; CRISPR/Cas9; Protein
	IMP		pathogenicity. Specifically, we seek to understand how	expression and purification; Liposome fusion assays; enzymatic assays; Protein
Paumet Lab			Chlamydia promotes its pathogenesis via 1) the	interaction; Chlamydia culture; Analysis of Chlamydia replication, conversion,
			reorganization of the host cytoskeleton, 2) the induction of	Chlamydia transformation transformation, etc
			membrane fusion using a unique bacterial fusion machinery,	
			3) co-opting lipid droplets, and 4) the generation of	
			membranous tubular structures during infection.	

RAMPAGE, Holly (Microbiology & Immunology)	IMP	Fall/Winter Spring Summer	We study virus-host interactions with a focus on positive strand RNA viruses including flaviviruses (West Nile, Dengue, Zika and Powassan virus and SARS-CoV-2. We study the physical interactions that occur between virus and host proteins that influence infection, including the strategies by which viruses evade host innate immune factors. We also study post-translational modifications (on viral and host proteins and how these modifications affect infection.	Cloning, mutagenesis, tissue culture, qPCR, fluorescence microscopy, proteomics, mass spectrometry, western blotting, immunoprecipitation, transfection and protein expression in cell culture models, RNA-seq, viral infection assays, siRNA knock-down of gene expression and CRISPR/Cas9, virus production
RIGOUTSOS, Isidore (Computational Medicine Center) Computational Medicine Center	BMP CBRM GGCB IMP NS	Fall/Winter Spring Summer	 Elucidation of the functional roles of tRNA-derived fragments (tRFs), rRNA-derived fragments (rRFs), and microRNA isoforms (isomiRs) Development of a blood-based test for diagnosing lung cancer Molecular Basis of health disparities in triple negative breast cancer Molecular Basis of health disparities in lung cancer Molecular Basis of health disparities in lung cancer Exploration of isomiRs, tRFs and rRFs as novel candidate therapeutics for cancers Study of the roles of isomiRs, tRFs, and rRFs during megakaryocyte proplatelet formation 	 Computational techniques Molecular Biology techniques Cell culture techniques Biochemical techniques
SIGAL, Luis A (Microbiology & Immunology) Sigal Lab	IMP	Spring	To be determined. Our lab works to understand mechanisms of resistance to viral infection and of vaccine protection. Rotating students are generally placed under the mentorship of a senior postdoc.	Virus infections, flow cytometry, ELISA, immunohistochemistry, bone marrow chimeras, adoptive transfers
SNOOK, Adam (Pharmacology & Experimental Therapeutics) Snook Lab	GGCB IMP	Summer Fall/Winter Spring	The research mission of the laboratory is to discover new aspects of cancer biology and immunology and to apply them to human health by creating new therapies. Current immunology projects focus on 1) discovering new immunotherapy targets, 2) defining selftolerance mechanisms restricting immunotherapy, and 3) bed-to- benchside reverse translation from patients and clinical trial subjects.	Cloning, recombinant virus & bacteria generation, immune cell engineering, Ex vivo models (organoid, PDX, etc), imaging, transfection, CRISPR/Cas9, omics (transcript, genome, epigenome), Transgenesis and breeding, genetic/inducible/implanted tumor models, vaccinations, ELISpot/ Fluorospot, cytokine and phenotype FACS, real-time cell killing, ELISA
SNYDER, Chris (Microbiology & Immunology) Snyder Lab	IMP	Summer, Fall (with prior agreement), Late Fall/Winter Spring	Our lab studies how the immune response to cytomegalovirus (CMV) and the pathogenesis caused by CMV infection. Specifically, we have projects to investigate: 1) how CMV escapes mucosal tissues after primary infection, 2) whether vaccines can limit CMV dissemination through the body, 3) how extracellular adenosine and pro-resolving lipids alter viral control in mucosal tissues, and 4) how CMV causes disease in neonatal eyes	Flow cytometry, transfers and depletions of lymphocytes to explore function in vivo, in vitro and ex vivo assays of T cell and macrophage function, cell culture, CMV growth and plaque assays, viral gene expression, production of recombinant viruses, Histology of tissues, mass spectrometry

SUN, Jianxin	BMP	Fall	Vascular inflammation, atherosclerosis, and aortic aneurysm	Molecular and cellular biology, biochemistry, knockout and transgenic mice,
(Center for Translational Medicine)	IMP	Spring		generation of animal models of human diseases, etc.
SYKULEV, Yuri (Microbiology & Immunology)	IMP	Summer Fall/Winter Spring	The atmosphere in my laboratory facilitates full support and a collaborative spirit for every trainee and provides an optimal ground for learning cutting edge approaches to investigate molecular mechanisms of immune system functioning and application of this knowledge to diagnose and treat various human diseases.	
TYAGI, Mudit (Center for Translational Medicine)	BMP CBRM GGCB IMP NS	Fall/Winter Spring	Our Lab research revolves around HIV and drugs of abuse focusing mainly transcriptional and epigenetic aspects. 1) How different drugs of abuse, such as cocaine, morphine and methamphetamine modulate HIV life cycle and neurocognitive impairments. 2) Define the underlying molecular and epigenetic mechanisms that regulate HIV latency and how they can be manipulated to eradicate HIV. 3) Identify the small molecules that can inhibit coronavirus, HIV and neutralize impact of different drugs of abuse.	RNA-Seq, ChIP-Seq, Western blotting, cloning, flowcytometry, mutagenesis, human cell culture (primary and cell lines), protein expression and purification, enzymatic assays, light and fluorescent microscopy, confocal microscopy, transcriptomic and proteomic analyses, transcription and signal transduction assays, besides other usual molecular biology lab assays.
WALDMAN, Scott (Pharmacology & Experimental Therapeutics)	BMP CBRM GGCB IMP NS	Fall/Winter Spring Summer	 Cell signaling in health and disease Mechanisms underlying malignant transformation in the GI tract Exploring chromatin structural reorganization underlying colorectal cancer Novel diagnostics and therapeutics for GI cancers Molecular approaches to treating inflammatory bowel disease Translating novel gut-brain axes regulating appetite into new therapeutics for obesity and metabolic diseases Novel endocrine and neural pathways linking brain and intestine Mechanisms regulating neuronal fitness and survival 	 Molecular Biology Human clinical trials Ex vivo human models Patient-derived xenograft models (PDX) Transgenic mouse models Organoids Molecular, cellular, & tissue Imaging Bioinformatics Immunology Chromtain structure and function Omic analyses
ZHANG, Jianke (Microbiology & Immunology) Zhang Lab	IMP	Spring	Immune cell proliferation, survival and death signaling in regulation of viral and bacterial pathogen control and tumor immune responses.	Mouse models (knockout mice, transgenic mice, CRISPR/CAS9-gene edited mice), flow cytometry, in ex vivo and in vivo immune response assays, gene cloning, western blotting and etc