Brian Yust

Assistant Professor of Physics

bgy001

Contact

4201 Henry Avenue
Search 316
Philadelphia, PA 19144

Email Brian Yust

210-885-5783

Brian Yust

Assistant Professor of Physics

Education

PhD, Physics, University of Texas (2012) Dissertion: "Nanoparticles for Biomedical Imaging, Therapy, and Quantitative Diagnostics"
MSc, Physics, Texas State University (2008) - Thesis: “The Degradation and Time-Dependent Breakdown of p-Type MOSFETs with a High-k Dielectric” 
BA, Physics; Mathematics minor, Texas A&M University (2005)

Publications

20. Pedraza, F. J., Avalos, J. C., Yust, B. G., Tsin, A., & Sardar, D. K. (2016). Effect of surface coating of KYb2F7: Tm3+ on optical properties and biomedical applications. Nanotechnology, 27 (38), 385601 (2016).

19. Ovanesyan, Z., Mimun, L.C., Kumar, G.A., Yust, B.G., Dannangoda, C., Martirosyan, K. and Sardar, D.K.. "Depth-Resolved Multispectral Sub-Surface Imaging Using Multifunctional Upconversion Phosphors with Paramagnetic Properties." ACS applied materials & interfaces DOI: 10.1021/acsami.5b06491 (2015).

18. Gonzalez‐Fernandez, F., Betts‐Obregon, B., Yust, B., Mimun, J., Sung, D., Sardar, D., & Tsin, A. T.; Interphotoreceptor Retinoid‐Binding Protein Protects Retinoids from Photodegradation. Accepted, Photochemistry and photobiology DOI: 10.1111/php.12416 (2015).

17. Chavva, S. R., Pramanik, A., Nellore, B. P. V., Sinha, S. S., Yust, B., Kanchanapally, R., ... & Ray, P. C. (2014). Theranostic Graphene Oxide for Prostate Cancer Detection and Treatment. Particle & Particle Systems Characterization, 31(12), 1252-1259 (2014).

16. Fan, Z., Yust, B., Nellore, B. P. V., Sinha, S. S., Kanchanapally, R., Crouch, R. A., ... & Ray, P. C. (2014). Accurate Identification and Selective Removal of Rotavirus Using a Plasmonic–Magnetic 3D Graphene Oxide Architecture. The Journal of Physical Chemistry Letters, 5(18), 3216-3221 (2014).

15. M. Pokhrel, L.C. Mimun, B.G. Yust, G.A. Kumar, A. Dhanale, L. Tang and D.K. Sardar, ”Stokes Emission in GdF3:Nd3+ Nanoparticles for Bioimaging Probe,” Nanoscale, Accepted, DOI: 10.1039/C3NR03317A (2013).

14. L.C. Mimun, G.A. Kumar, M. Pokhrel, B.G. Yust, Z. Elliott, A. Dhanale, F. Pedraza A.L. Lin, V.P. Dravid, L. Tang, and D.K. Sardar , “Bimodal imaging using Nd3+ doped GdF3 nanocrystals with near-infrared to near-infrared downconversion luminescence and magnetic resonance properties”, Journal of Materials Chemistry B, Accepted, DOI: 10.1039/C3TB20905A (2013).

13. I. Obregon, B. S. Betts-Obregon, B. Yust, F. Pedraza, A. Ortiz, D. Sardar, A. Tsin, "Effect of Silver Coating on Barium Titanium Oxide Nanopartilce Toxicity", Advanced Materials Research, 787, 44-47 (2013).

12. Fan, Z., Senapati, D., Khan, S. A., Singh, A. K., Hamme, A., Yust, B., Sardar, D. and Ray, P. C., “Popcorn Shape Magnetic Core-Plasmonic Shell Multifunctional Nanoparticle for Targeted Magnetic Separation & Enrichment, Label-Free SERS Imaging and Photothermal Destruction of Multi Drug Resistance Bacteria”, Chemistry: A European Journal, 19, 2839-2847, DOI: 10.1002/chem.201202948 (2013).

11. Barrera, F.J., Yust, B. G., Mimun, L. C., Nash, K. L., Sardar, D. K., and Tsin, A. T., “Optical and spectroscopic properties of human whole blood and plasma with and without Y2O3 and Nd3+ :Y2O3 nanoparticles”, Lasers in Medical Science, 1-8, (2013).

10. Brian G. Yust; Dhiraj K. Sardar; Lawrence C. Mimun; G.A.Kumar; Andrew Tsin,” Rare Earth doped nanoparticles for imaging and PDT,” Proc. SPIE 8594, DOI: 10.1117/12.2004939 (2013).

9. M. Pokhrel, Jianhui Yang, G. A. Kumar, B. Yust, and D. K.Sardar, “Plasmon-enhanced upconversion in Yb3+/Er3+ doped inY2O3," Proc. SPIE 8641, DOI: 0.1117/12.2004858 (2013).

8. Yust, B. G., Razavi, N., Elliott, Z., Pedraza, F., Tsin, A. T., Sardar, D. K., “Enhancement of Nonlinear Optical Properties of BaTiO3 nanoparticles by the Addition of Silver Seeds”, Optics Express, 20, 26511-26520 (2012).

7. Yust, B., Mimun, L. C., and Sardar, D. K., “Optical absorption and scattering of bovine cornea, lens, and retina in the near-infrared region”, Lasers in Medical Science, 27 (2), 413-422, DOI 10.1007/s10103-011-0927-9 (2012).

6. Yust, B. G., Kumar G.A., Mimun, L.C., Sardar, D. K., “Efficient Upconverting Nanophosphors for Imaging and Photodynamic Therapy”, Proceedings 2012 MRS Spring Meeting, San Francisco, Ca, April 9-13, 2012.

5. Yust, B. G., Mimun, L.C., Sardar, D. K., Kumar G.A., “Highly efficient phosphors in cancer sensing and PDT” Proc. SPIE 8233, 823312 (2012). DOI: 10.1117/12.908986

4. Yust, B. G., Razavi, N., Pedraza, F., Sardar, D. K., “Utilizing nonlinear optical properties of nanoparticles for imaging and sensing”, Proc. SPIE 8231, 82310H (2012). DOI: 10.1117/12.909009

3. Yust, B. G., Sardar, D. K. and Tsin, A. T., "Phase conjugating nanomirrors: utilizing optical phase conjugation for imaging", Proc. SPIE 7908, 79080G (2011); DOI:10.1117/12.874293

2. Yust, B. G., Sardar, D. K. and Tsin, A. T., "A comparison of methods for determining optical properties of thin samples", Proc. SPIE 7562, 75620C (2010); DOI:10.1117/12.841362

1. Sardar, D. K., Yust, B. G., Barrera, F., Mimun, L. C., and Tsin, A. T. C., “Optical Absorption and scattering of Bovine Cornea, Lens and Retina in the Visible Region”, Lasers in Medical Science, 24 (6), 839-847, DOI 10.1007/s10103-009-0677-0 (2009).

Focus Areas

Nanoparticle synthesis, Nanoparticle applications, Nanomedicine, Biomedical imaging, Biophotonics, Spectroscopy, Multifunctional materials, Optically active materials, Bio-sensing

Research Interest

Brian Yust is a biophysicist who works at the intersection of photonics, material science, and biology to design and implement novel nanomaterials for biomedical applications. He has ongoing projects involving rare earth nanoparticles for photodynamic cancer therapy as well as contrast agents for non-ionizing medical imaging modalities, such as MRI and near-infrared. Brian has recently been developing a novel nanoparticle based detection system for glucose metabolism in the presence of sucralose and other sugar substitutes. Other research interests include nanoscale interactions at the organic-inorganic interface, using light to activate and manipulate materials on the nanoscale, using nanoparticles to detect and destroy multidrug-resistant bacteria, and new synthesis methods of multifunctional nanoparticles.