Haifeng Yang, PhD
Assistant Professor

Contact
Haifeng Yang, PhD
Assistant Professor
Research & Clinical Interests
Cancer is a genetic disease. It develops after spelling errors appear in the blueprint of the book of life: our DNA. Activation mutations in oncogenes and/or inactivation mutations in tumor suppressor drive tumor formation. In human kidney cancer, the highly frequent mutations in a critical tumor suppressor gene VHL are the leading cause of tumor development.
It is now known that VHL loss would trick cells into the state of pseudo hypoxia (oxygen deprivation): the cancer cells think that they are extremely low on oxygen supply, and they activate a transcriptional response (reading from the DNA). Long-term, uncontrolled activation of this hypoxia response program drives the development of kidney cancer. Anti-angiogenesis therapies, which partially block this program, produce positive albeit often transient outcomes in kidney cancer patients. Thus, better understanding of the hypoxia response program might enable us to better exploit the weakness of VHL-defective cancer cells.
Our group discovered that this abnormally activated transcriptional program significantly altered a critical mark on histone, proteins that package DNA and regulate its reading. This was achieved through activating an enzyme called JARID1C. In VHL-defective cancer cells, JARID1C reduced the mark on histone. Furthermore, JARID1C contributed to drug resistance.
Thus in project 1, we will address mechanistically how JARID1C is activated, and whether disrupting JARID1C would defeat the drug resistance.
We have identified that VHL protein regulates the protein stability of the oncogene EGFR. In project 2 we will elucidate the biochemical mechanism.
Recently 40% of kidney cancer was found to harbor mutations in PBRM1. PBRM1 is a critical targeting subunit of a protein complex that remodels the structure of human chromosome. In project 3, we are studying how the tumor-derived mutations of PBRM1 disrupt its biochemical functions, and how PBRM1 collaborates with JARID1C to regulate gene transcription.
In project 4, we are collaborating with the clinicians and scientists at Fox Chase Cancer Center and Cleveland Clinic to investigate whether the unique genetic makeup of the tumors lead to drastically different drug response to current anti-angiogenic therapies.
Education
Education
PhD, Syracuse University
Fellowship
Dana-Farber Cancer Institute, Harvard Medical School
Most Recent Peer-Reviewed Publications
- Erratum: Correction: Multiple tumor suppressors regulate a HIF-dependent negative feedback loop via ISGF3 in human clear cell renal cancer (eLife (2018) 7 PII: e69256)
- PBRM1 suppresses tumor growth as a novel p53 acetylation reader
- PBRM1 acts as a p53 lysine-acetylation reader to suppress renal tumor growth
- Oxygen sensing and adaptability won the 2019 Nobel Prize in Physiology or medicine
- High affinity binding of H3K14ac through collaboration of bromodomains 2, 4 and 5 is critical for the molecular and tumor suppressor functions of PBRM1