Philadelphia University + Thomas Jefferson University

Joseph, Suresh K.

< Back



Suresh K. Joseph, PhD

Contact Dr. Joseph

1020 Locust Street
Jefferson Alumni Hall, Suite 230
Philadelphia, PA 19107

(215) 503-1221

Medical School

PhD, University of Bristol, England - 1978

University Appointment

Professor, Department of Pathology, Anatomy & Cell Biology

Research and Clinical Interests

Structure, function, and regulation of the inositol trisphosphate receptor (IP3R); biosynthesis and assembly of IP3R homo- and heteroligomers; mechanisms of proteosomal and lysosomal degradation of IP3R.

An elevation of the free calcium concentration in the cytoplasmic compartment is an integral component of the mechanism by which cells respond to many hormones, growth-factors and neurotransmitters. D- myo-Inositol 1,4,5-trisphosphate (IP3) is an intracellular messenger mediating the hormonal mobilization of Ca2+ from intracellular stores. This molecule interacts with a specific IP3 receptor ( IP3R ) that has been purified and shown to be a ligand-gated calcium channel. The work in my lab is focused on studying the structure, function and regulation of IP3 receptors.

The current projects in our lab include:

  • Examining the gating mechanism by which IP3 binding leads to opening of the channel
  • Identifying key residues in the ion conduction pore by mutagenesis
  • Studying the molecular mechanism of the large structural changes in the receptor induced by calcium binding
  • Investigating the role of the IP3R in apoptosis, particularly with reference to the finding that the channel is phosphorylated by Akt kinase.
  • Studying the biosynthesis and degradation of IP3Rs. A major interest is the mechanism of agonist-mediated degradation which involves the ubiquitin/proteasome pathway.

The long-term goal is to understand how these proteins function in individual cells to generate complex spatial and temporal patterns in their Ca2+ transients and how such signals are decoded to alter physiological responses.


Most Recent Peer-Reviewed Publications

  1. MSTO1 is a cytoplasmic pro-mitochondrial fusion protein, whose mutation induces myopathy and ataxia in humans
  2. Mitochondrial Ca2+Uniporter Is a Mitochondrial Luminal Redox Sensor that Augments MCU Channel Activity
  3. Association of 3 different antihypertensive medications with hip and pelvic fracture risk in older adults secondary analysis of a randomized clinical trial
  4. Strategic positioning and biased activity of the mitochondrial calcium uniporter in cardiac muscle
  5. Subcellular ROS imaging methods: Relevance for the study of calcium signaling
  6. Isoform- and species-specific control of inositol 1,4,5-trisphosphate (IP3) receptors by reactive oxygen species
  7. Hormone-Induced Calcium Oscillations Depend on Cross-Coupling with Inositol 1,4,5-Trisphosphate Oscillations
  8. Functional inositol 1,4,5-trisphosphate receptors assembled from concatenated homo- and heteromeric subunits
  9. Identification of functionally critical residues in the channel domain of inositol trisphosphate receptors
  10. Guidelines for the use and interpretation of assays for monitoring autophagy
  11. S-glutathionylation activates STIM1 and alters mitochondrial homeostasis
  12. Calcium-dependent conformational changes in inositol trisphosphate receptors
  13. Role of thiols in the structure and function of inositol trisphosphate receptors
  14. Role of inositol trisphosphate receptors in autophagy in DT40 cells
  15. Linking structure to function: Recent lessons from inositol 1,4,5-trisphosphate receptor mutagenesis
  16. Surface accessibility and conformational changes in the N-terminal domain of type I inositol trisphosphate receptors: Studies using cysteine substitution mutagenesis
  17. Regulation of single inositol 1,4,5-trisphosphate receptor channel activity by protein kinase A phosphorylation
  18. Molecular characterization of the inositol 1,4,5-trisphosphate receptor pore-forming segment
  19. Role of inositol 1,4,5-trisphosphate receptors in apoptosis in DT40 lymphocytes
  20. IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond